
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 43, N0. 7, JULY 19951620

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R. Pregla, “Methodoflines for the analysis of multilayered gyrotropic
waveguide stmctrrres.’’ IEEProH, H, vol. 140, no.3, pp. 183–192, June
1993.
M. Abramowitz and I. A. Stegun, Harzdbook of Mathematical Functions

with Fornstdas, Graphs, and Mathematical Tables. New York: Dover.

W. Pascher, “Full wave anafysis of discontinuities in planar waveguides

by tbe method of lines,” in Proc. URSI Int. Symp. Electromagnetic

Theory, Stockholm, Sweden, Aug. 1989, pp. 446-448.
A. Dreher and R. Pregla, “Full-wave analysis of radiating planar

resonators with the method of lines,” IEEE Trans. Microwave Theory

Tech., voL41. no. 8, pp. 1363-1368, Aug. 1993.
F. J. Schmtickle and R. Pregla, “The method of lines for the analysis

of planar waveguides with finite metallization thickness,” IEEE Trans.
Microwave T7reo~ Tech., vol. 39, no. l, pp. 107–lll, Jan. 1991.
R. Pregla, “Highero rderapproximatlonf orthedlfference operators m
the method of lines,” IEEE Microwave Guided Wave Lett., vol. 5. no.
2. Feb. 1995.

H. Diestel and S. B. Worm, “Analysis of hybrid field problems by
the method of lines with nonequidistant discretization,” IEEE Trans.

Microwave Theory Tech., vol. 32, no.6, pp,633-638, June 1984.

Magnetic Frequency-’Ilmable Millimeter-Wave

Filter Design Using Metallic Thin Films

Hoton How, Ta-Ming Fang, and Carmine Vittoria

Abstract— Frequency tunable millimeter wave filters are considered
to be fabricated using metallic ferromagnetic thin films. Whereas con-

ventional filters which include insulating ferrite materials utilize tbe
phenomenon of ferromagnetic resonance (FMR), our design incorporates

the phenomenon of ferromagnetic anti-resonance (FMAR). Our calcu-
lations indicate that in comparing the characteristics of the two types

of filters the filter utilizing magnetic metal films is superior in terms of
insertion loss and integrabitity with other planar millimeter wave devices.
Design of band-pass filter can be reatized in which the transmission
frequency occurs at FMAR frequency with a frequency bandwidth equal

to the FMAR linewidth.

I. INTRODUCTION

In the past microwave/millimeter wave filters were inevitably

designed in terms of varying the capacitive or inductive loading of the

resonators. For the former case varactors are commonly used in which

the frequency tuning range of the filter can be only a few percent of

the transmission frequency [1]. For the latter case ferrite insulators

are used which are usually in the form of polished spheres of single

crystal yttrium iron garnet (YIG). The ferrite spheres are biased

by a magnetic field and the transmission frequency is designed at

ferromagnetic resonance (FMR) [2]. Both designs involving varactors

and ferrite insulators are limited to relatively low-power applications.

We consider in this paper for the first time a new design in which

metallic magnetic films are used instead of ferrites in order to im-

prove the band-pass characteristics. Whereas conventional insulating

ferrite materials utilize the phenomenon of ferromagnetic resonance

(FMR), the use of magnetic metal films utilizes the phenomenon of

ferromagnetic anti-resonance (FMAR). Normally metals more than
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a few p thick are opaque to microwave radiation. However, it was

predicted by Kaganov [3] (1959) and discovered by Heinnch and

Meshcheryakov [4] (1969) that a ferromagnetic metal becomes rela-

tively transparent to microwave radiation over a limit range of applied

magnetic fields near the field strength corresponding to FMAR. At

FMAR the effective permeability of the metal film is very small

and, hence, the resultant microwave skin depth becomes anomalously

large. Additional work on this subject maybe found in [5]-[7].

Our filter design involves the fabrication of a composite microstrip

line in which a thin magnetic metal film is inserted in the substrate

layer of the microstnp line, which is connected to and lies parallel

to the ground plane. The characteristic impedance of the microstrip

line in the absence of the metal film is 50 Q. A dc magnetic field

is applied normal to the film plane. When the magnetic film is

biased away from FMAR the magnetic metal film interferes strongly

with wave propagation. The characteristic impedance of the line

appears to be much smaller than 500. The signal is reflected when

biased off-FMAR due to impedance mismatch. However, for biasing

field at FMAR the skin depth within the magnetic metal becomes

substantially greater than the film thickness. Consequently, at FMAR

the impedance of the line changes to 50 L? which matches the

input signal feeder line. The band-pass transmission bandwidth is

consequently the FMAR linewidth [5]–[7]. We have calculated the

transmission properties of the filter based on the use of permalloy thin

films. The calculations show the following characteristics: insertion

loss is less than 0.2 dB, isolation larger than 10 dB, and frequency

tunability extends from 30 to 120 GHz.

FMAR occurs for frequencies somewhat above FMR. At FMAR

the rf magnetic moment, m, is out-of-phase with the driving field,

h, so that [5]-[7]

b=h+47rm=o. (1)

For this condition the dynamic permeability, V, is very small (limited

by the value of magnetic relaxation) and the effective skin depth is

large, being limited only by the magnetic damping. The condition of

(1) combined with the magnetic equation of motion

&f=yiMx H (2)

where

H= Ho+h

readily leads to the condition for FMAR

w~y = BO = Hi. + 4n1M, (3)

where H,. is the static internal magnetic field, -y the gyromagnetic

ratio, and 4nAf. the saturation magnetization.

At FMAR the metaf film is characterized by a small permeability

value which results in very large skin depth when the metal film is

exposed to rf excitations [5]–[7]. Therefore, the metal film appears to

be transparent to the microwave millimeter wave transmission when

it is biased at FMAR. The frequency bandwidth of transmission is

roughly equal to the Iinewidth at FMAR [3]

AHFMAR = 0.3(47rIbf, )[(6./d)(AH/4Ws )3’2]1’2 (4)

where d is the thickness of the metal film, 8. the classical skin depth

6, = c/(27ruw)l@

c the speed of light in vacuum, a the conductivity of the metal film,

and AH is the linewidth at FMR given by

AH = 2( A/7J)(W/7iV15). (5)

Here J denotes the Landau–Lifshitz damping parameter [6].
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Fig. 1. Schematic drawing of the filter design incorporating magnetic thin

film in a microstrip line.

II. CALCULATIONS

In the filter design considered by us a thin magnetic metal is

inserted in the substrate layer of a microstrip transmission line which

lies parallel to the ground plane, see Fig. 1. The metal film is

characterized by thickness, d, saturation magnetization, 47rI%fs, FMR

line width AH, and resistivity, p = I/a. The copper microstrip is

of width w and the substrate thicknesses are denoted as dl and dz,

respectively, see Fig. 1, In the absence of metal film, i.e., d = O,

the characteristic impedance of microstrip is designed to be 50 Q

[8]. Therefore, when biased at FMAR the characteristic impedance

of the composite microstrip line of Fig. 1 is roughly 50 Q since the

metal film is almost invisible to the microwave propagation along

the line. However, when biased off-FMAR the magnetic thin film

becomes effectively the ground plane and the resultant transmission-

line impedance can be much less than 50 Q if dl is much smaller

than dz. The signal at the filter input is reflected due to impedance

mismatch.

In the formulation we used a finite-difference calculational scheme

in which the microstnp assembly is enclosed by finite (perfect) metal

boundaries, 2a and b, respectively, see Fig. 1. We will let a and b

go to infinity in the final answer to simulate an infinite composite

rnicrostrip line. The effective permeability of the metal film is [6]

p = PI +&pl (6)

where

H’ = Hin + j~f/~3

H~n = Ho – 4~Ms,

and Q is the Gilbert damping constant. The effective permittivity of

the metal film is

f = 4i’riu/u.

Let the strip width be w and the four shielded planes be located at

z = –a, z = a, y = b, and y == –(dl +d+dz). In the follclwing

we will use the (dynamic) gauge-fields in the calculations of the

characteristic impedance, Zo, and the propagation constant, k, for

the microstrip line [9]. Denote z-axis to be along the microstrip line.

Electric field, 13, and magnetic induction, 13, may be derived from

a scalar potential, 0, and a vector potential, A, by the follc~wing

equations

E=–~+–3A/&, l?=gx A. (8)

Under Lorentz gauge @ and A are related by

y. A+e~tXD/Ot=o (9)

and @ and A satisfy the following Helmholtz equations

(V2 – .pa’/#)@ = o, (lo)

(V2 - cp (92/i2t2)A = O. (11)

Let the fields have the following dependence: exp [j (tit – ksz)]. For

TM modes one may show below that A shall be parallel to the z-axis

and from (10) and (11 ) one derives

A = (epti/k)@2, (12)

E = –VttJ+jk5(l – qJLJ’/k2)@, (13)

D = (c&w/k)2 x V,o. (14)

The advantages of adopting the above gauge-field expressions fcr the

TM waves in the composite microstrip configuration are as foll[ows.

Firstly, the lowest mode in a microstrip line may be approximated as

TM waves. In this case one has to solve a second-order Helmholtz

equation, (10), in a two-dimensional geometry, Fig. 1. Secondly,

since all of the shielded surfaces and the metal strip are paralllel to

the z-axis, the induced surface charges can be calculated from ( 13) as

u. = –e@O/i3n (15)

where rl denotes the unit direction normal to the surface. Equation

(15) resembles exactly the static case in which @ takes the place of

a static potentird.

Equation (10) can be solved for the composite microstrip line

shown in Fig. 1 using finite difference method. The boundary con-

ditions at the layer-layer interfaces are that @ and c@@/tlg are

continuous across the interfaces: y = O, y = – dl. and y =

–(all + d). Perfect conductor boundary conditions, ~@/??n = O,

are assumed at the shielded metal surfaces: z = –a, x = a, y = b,

and y = – ( dl + d + dz ). Here h denotes the unit direction nc,rmal

to the shielded surfaces. Propagation constant k, which is a complex

number in general, can be determined by imposing the zero-charge

condition in which the total charges induce over all of the metal

surfaces are zero

n. Vta = o (16)

where ~ denotes all of the metal surfaces. The effective dielectric

constant for the composite structure of the microstrip line, c., can be

calculated from the propagation constant k as

CT = W(e. po) ~’2/Re (k). (17)

The characteristic impedance of the line, Zo, is derived from ~, and

c~~, which are the capacitances per unit length of the line, as [13]

r

f. PO
z.= — (18)

c, E..
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wherec,o represents thevalue of thecapacitance perunit length when

the layers are replaced by air. For the case of single-layer substrate,

d= Oandel =ez, calculations fore, and Zousing theabove gauge-

field method give rise to exactly the same results as the conventional

method for a microstrip line [9].

Let the above microstrip line of length L, which is connected to

two 50 f) feeder lines. Denote the characteristic impedance and wave

propagation constant of the feeder lines byZl andkl, respectively.

The reflection coefficient, R, at the input port and transmission

coefficient, T, at the output port can be calculated to be

R = –I”(E – I/E). (19)

T = I“(.Y – l/X) exp(jkl L) (20)

where E, X, and Y are defined as

E = exp(–jkOL),

x- = (Z. – z,)/(zo + z, ).

Y+ [Ex- – (EX-1]-1.

Scattering parameters, S11 and S21, are therefore

s,, = 2olog,olR], and S21 = 2010g101T1. (21)

III. RESULTS

The transmission characteristics of the above line of length L have

been calculated assuming 50 Q air feeder lines. Fig. 2 shows the

transmission curves as a function of frequency for various external

biasing field strength, Ho. In Fig. 2 we have used the following

parameters:

E=5

dl = 0.05 mm

dz = 0.5 mm

d = 10 pm

u) = 0.885 mm

L = 0.5 mm

47rLf, = 10 kG (permalloy)

AH = 50 Oe (at 30 GHz)

P = 4.68 @ cm (permalloy).

It is seen in Fig. 2 that the transmission occurs at FMAR frequency

with a bandwidth roughly equal to the FMAR linewidth. The trans-

mission frequency is tuned from 30 to 70 GHz with insertion loss less

than 0.2 dB, isolation larger than 10 dB, and frequency bandwidth

less than 2 GHz. In order to enhance isolation larger L and smaller

dl values may be used.

o

-5

-lo

-15

-20

I (4): HO= 25 KOe

-25 L I t I t I
20 40 60 80 100 120

Frequency (GHz)
‘iransrnission characteristics of the filter biased at various magnetic

IV. CONCLUSION

The insertion loss for a resonant-type filter is inevitably high, since

at FMR energy dissipates as heat when the processing motion of

spins is damped by magnetic relaxation. Furthermore. the frequency

tuning range of the filter is limited by the excitation of higher-order

magnetostatic modes appearing as spurious transmission. Instead

of utilizing ferromagnetic resonance phenomenon associated with a

ferrite insulator we have considered in this paper the fabrication of

nonresonant frequency-tunable band-pass filters using ferromagnetic

metals which are biased at ferromagnetic anti-resonance (FMAR).

Since the devices are biased off-resonance, the filters exhibit low

insertion loss which can be applied under relatively higher power

conditions. However, the calculated isolation exhibit lower values

than that obtained from a resonan-type YIG filer [2]. In order to

increase the frequency tuning range of the filter metal films other than

permalloy with lower magnetization saturation values are preferred

to be used. For example, cobalt alloyed magnetic thin films can

have very small 47rJW, values. Of particular interest we propose the

use of C07AGeGB 1sSis thin films, since they possess nearly zero

magnetostriction coefficients and exhibit very small magnetization

saturation values [10]. Our tunable filter design provides great ad-

vantage over the traditional YIG filters in terms of tuning frequency

range, response time, and compatibility with other planar microwave

circuits. Frequency tunable filters are desirable for radar transmitter-

receiver module applications in order to eliminate receiver images as

well as to increase amplifier efficiency.
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Quick Computation of [C], [L], [G], and [R] Matrices of

Multiconductor and Multilayered Transmission Systems

Gonzalo Plaza, Francisco Mesa, and Manuel Homo

Abstract-This paper presents a general scheme to compute the four
characteristic matrices, [C], [G], [L] and [R], of a mnftilayered and
multiconductor transmission tine with arbkrary cross section conductors

under quasi-TEM approach and strong skin effect regime. The conductors
are modeled as a set of infinitesimally thhr strips following the lkf-

strip model. An spectral domain approach (SDA) has been employed,

paying special attention to the efficient computation of the spectraf tails.
Conductor losses are considered via the incremental inductance rule

extended to the multiconductor case.

I. INTRODUCTION

The computation of the TEM (or quasi-TEM) parameters of

multiconductor transmission lines having arbitrary cross section con-

ductors embedded in a layered medium is basic for the design

and analysis of a variety of technological problems ranging from

microwave integrated/printed circuits to high speed interconnects.

Several methods have been gradually reported in the literature to

compute these parameters, although general treatments have been

only provided recently. Some of these general methods, following

different techniques, have been reported in [1]-[3] and [4]. In [5]

and [6] the authors proposed and developed the M-strips model

to analyze arbitrary cross section perfect conductors in a multilay-

ered medium without restriction on those dielectric and magnetic

properties compatible with the quasi-TEM approach.

In the present work, we present a new mixed spectraJ/spatial

domain approach to compute the characteristic matrices of transmis-

sion lines with arbitrarily cross section conductors (in laterally open

environment) using the kl-strips model. We have attained a good

numerical efficiency by combining the complex images technique [7]

with a nontrivial extension of the guide lines suggested in [8] to

evaluate the required inner products and convolutions and the use of

recurrence relationships [6]. We have also incorporated the study of

conductor losses under strong skin effect regime by computing the

resistance matrix via an extension of the incremental inductance rule

of Wheeler to a multiconductor line [9].

II. ANALYSIS

Following the Wstrip model [5], each original conductor with

arbitrary cross section is modeled as a set of infinitesimally thin

strips at the same potential and circumscribed to the contour of the
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original conductor. The corresponding spectral integral equation is

solved via the Galerkin’s method (using as spatial basis function the

Chebyshev’s polynomials weighed by the Maxwell’s distribution).

The spectral integrals appearing in the Galerkin’s matrix show the

following form

(1)

where the subscripts p and q are used to number the strips in the

model, wP(~) is the width of each strip; s = Cq – CP with CP(~1 being

the abscisa of their centers; J. is the Bessel function of order n and

G,J (k. ) is the spectral Green’s function for a source line at the jth

metallizated level (where qth strip is placed) and field points at the

ith level (where pth strip is placed).

Since the numerical efficiency of the SDA is strongly determined

by the fast and accurate computation of the spectral integrals, we

have paid an especial attention to accelerate its computation because

we face to a very slow convergence caused by extremely close strips.

We have used the asymptotic integration scheme shown in [6], where

the asymptotic behavior of the spectral Green’s function, G;, is now

expressed following the complex images technique [7]

(2)

Expansion (2) provides a very good fitting of the spectral Green’s

function and thus the integrals involving G – G- converge quickly.

In consequence, the efficiency of the proposed integration technique

lies basically in the computation of the integral tails. The generic

form, except for constants, of these integral tails is

J“
~(–#+J4&

1: = J. (ak. )Jm(bk. ) ~ dkz (3)
u z

where u is a suitable value to start using the asymptotic behavio~

a and b are the semiwidths of the strips; ~ = – Re (n) and

d = s + Im(fl) (Q stands for any of the complex exponents in (2)).

The new distance, d, can be seen as a modified distance between the

centers of the strips in the integraJs tails.

The integral tails (3) are computed by reversing them to the

spatial domain via Parseval’s theorem. The use of Parseval’s thec~rem

requires a previous extension of the tails from – N to +CO. ‘This

extension is readily made by multiplying the integrand in (3) by

the step function H(kx – u) and so, the following spatial domain

integral is obtained

/
~m =.in(-j)m 1 T.(7)

n T’ -, -J=

~[J1T~(n)

1-1 c@uc) ‘“ ‘7
(4)

where ~ = /3 + j (a q – bo – d). a and y appear after changing the

integration variable (both in the convolution integral in IJ- andl the

inner product integral in ~-) into the interval ( – 1.1 ) and El ( u <)

stands for the exponential integral function, which can be expanded

as shown in [10]. The convolution product in expression (4) might

be regarded as a complex potential originated by a strip of width 2b

(source-strip) over a second strip of width 2a (observer-strip) placed

at a height ~ above the first one, and with its center laterally separated

a distance d. We will express ourselves in these terms to simplify the

descriptions in the below analysis.
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