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Magnetic Frequency-Tunable Millimeter-Wave
Filter Design Using Metallic Thin Films

Hoton How, Ta-Ming Fang, and Carmine Vittoria

Abstract— Frequency tunable millimeter wave filters are considered
to be fabricated using metallic ferromagnetic thin films. Whereas con-
ventional filters which include insulating ferrite materials utilize the
phenomenon of ferromagnetic resonance (FMR), our design incorporates
the phenomenon of ferromagnetic anti-resonance (FMAR). Our calcu-
lations indicate that in comparing the characteristics of the two types
of filters the filter utilizing magnetic metal films is superior in terms of
insertion loss and integrability with other planar millimeter wave devices.
Design of band-pass filter can be realized in which the transmission
frequency occurs at FMAR frequency with a frequency bandwidth equal
to the FMAR linewidth.

I. INTRODUCTION

In the past microwave/millimeter wave filters were inevitably
designed in terms of varying the capacitive or inductive loading of the
resonators. For the former case varactors are commonly used in which
the frequency tuning range of the filter can be only a few percent of
the transmission frequency [1]. For the latter case ferrite insulators
are used which are usually in the form of polished spheres of single
crystal yttrium iron garnet (YIG). The ferrite spheres are biased
by a magnetic field and the transmission frequency is designed at
ferromagnetic resonance (FMR) [2]. Both designs involving varactors
and ferrite insulators are limited to relatively low-power applications.

We consider in this paper for the first time a new design in which
metallic magnetic films are used instead of ferrites in order to im-
prove the band-pass characteristics. Whereas conventional insulating
ferrite materials utilize the phemomenon of ferromagnetic resonance
(FMR), the use of magnetic metal films utilizes the phenomenon of
ferromagnetic anti-resonance (FMAR). Normally metals more than
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a few p thick are opaque to microwave radiation. However, it was
predicted by Kaganov [3] (1959) and discovered by Heinrich and
Meshcheryakov [4] (1969) that a ferromagnetic metal becomes rela-
tively transparent to microwave radiation over a limit range of applied
magnetic fields near the field strength corresponding to FMAR. At
FMAR the effective permeability of the metal film is very small
and, hence. the resultant microwave skin depth becomes anomalously
large. Additional work on this subject may be found in [5]-[7].

Our filter design involves the fabrication of a composite microstrip
line in which a thin magnetic metal film is inserted in the substrate
layer of the microstrip line, which is connected to and lies parallel
to the ground plane. The characteristic impedance of the microstrip
line in the absence of the metal film is 50 Q. A dc magnetic field
is applied normal to the film plane. When the magnetic film is
biased away from FMAR the magnetic metal film interferes strongly
with wave propagation. The characteristic impedance of the line
appears to be much smaller than 50 2. The signal is reflected when
biased off-FMAR due to impedance mismatch. However, for biasing
field at FMAR the skin depth within the magnetic metal becomes
substantially greater than the film thickness. Consequently, at FMAR
the impedance of the line changes to 50 €2 which matches the
input signal feeder line. The band-pass transmission bandwidth is
consequently the FMAR linewidth [5]-[7]. We have calculated the
transmission properties of the filter based on the use of permalloy thin
films. The calculations show the following characteristics: insertion
loss is less than 0.2 dB. isolation larger than 10 dB, and frequency
tunability extends from 30 to 120 GHz.

FMAR occurs for frequencies somewhat above FMR. At FMAR
the rf magnetic moment, m, is out-of-phase with the driving field,
h, so that [S5]-[7]

b=h+4mm =0. ()]
For this condition the dynamic permeability, p, is very small (limited
by the value of magnetic relaxation) and the effective skin depth is

large, being limited only by the magnetic damping. The condition of
(1) combined with the magnetic equation of motion

M=~MxH (2)
where
H=Ho+h
readily leads to the condition for FMAR
w/v = Bo = Hiy + 47 M, 3)

where H,, is the static internal magnetic field, v the gyromagnetic
ratio, and 47 M, the saturation magnetization.

At FMAR the metal film is characterized by a small permeability
value which results in very large skin depth when the metal film is
exposed to rf excitations [S]-[7]. Therefore, the metal film appears to
be transparent to the microwave millimeter wave transmission when
it is biased at FMAR. The frequency bandwidth of transmission is
roughly equal to the linewidth at FMAR [3]

AHpmar = 0.3(47r]vls)[(6s/d)(AH/1MS)3/2]1/2 @)
where d is the thickness of the metal film, 4, the classical skin depth
8§ = c/(2mow)/?

c the speed of light in vacuum, ¢ the conductivity of the metal film,
and AH is the linewidth at FMR given by

AH = 2(Ay)(w/vM;). (5)

Here A denotes the Landau-Lifshitz damping parameter [6].
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Fig. 1. Schematic drawing of the filter design incorporating magnetic thin
film in a microstrip line.

. CALCULATIONS

In the filter design considered by us a thin magnetic metal is
inserted in the substrate layer of a microstrip transmission line which
lies parallel to the ground plane, see Fig. 1. The metal film is
characterized by thickness, d, saturation magnetization, 47 M, FMR
line width AH, and resistivity, p = 1/o. The copper microstrip is
of width w and the substrate thicknesses are denoted as d; and do,
respectively, see Fig. 1. In the absence of metal film, ie., d = 0,
the characteristic impedance of microstrip is designed to be 50 {2
[8]. Therefore, when biased at FMAR the characteristic impedance
of the composite microstrip line of Fig. 1 is roughly 50 €, since the
metal film is almost invisible to the microwave propagation along
the line. However, when biased off-FMAR the magnetic thin film
becomes effectively the ground plane and the resultant transmission-
line impedance can be much less than 50  if d; is much smaller
than ds. The signal at the filter input is reflected due to impedance
mismatch.

In the formulation we used a finite-difference calculational scheme
in which the microstrip assembly is enclosed by finite (perfect) metal
boundaries, 2a and b, respectively, see Fig. 1. We will let ¢ and b
go to infinity in the final answer to simulate an infinite composite
microstrip line. The effective permeability of the metal film is [6]

b= p1+p3/p ©)

where

dn M, H* do M f [~

mr-ppe om0

p =1+

H* = Hin +]Olf/'Y9

IH}D = l]b — 47TA4;,

and o is the Gilbert damping constant. The effective permittivity of
the metal film is

€ = 4mic /w.
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Let the strip width be w and the four shielded planes be localed at
z=—-a,z=a,y=>b,and y = —(d1 +d + d2). In the following
we will use the (dynamic) gauge-fields in the calculations of the
characteristic impedance, Z,, and the propagation constant, k, for
the microstrip line [9]. Denote z-axis to be along the microstrip line.
Electric field, E, and magnetic induction, B, may be derived from
a scalar potential, ®, and a vector potential, A, by the following

equations
E=-v®-0A/0t, B=1vVXA. 8)

Under Lorentz gauge ® and A are related by

V-A+eud®/ot=0 )

and ® and A satisfy the following Helmholtz equations
(V2 —end*/0t*)® = 0, 10)
(V? —end”/0t")A = 0. an

Let the fields have the following dependence: exp [j(wt — kz)]. For
TM modes one may show below that A shall be parallel to the z-axis
and from (10) and (11) one derives

A= (epw/k)® %, (12)
E=—934jk2(1 - e [E*)®, (13)
B = (epw/k)z x v, . 14)

The advantages of adopting the above gauge-field expressions for the
TM waves in the composite microstrip configuration are as follows.
Firstly, the lowest mode in a microstrip line may be approximated as
TM waves. In this case one has to solve a second-order Helmholtz
equation, (10), in a two-dimensional geometry, Fig. 1. Secondly,
since all of the shielded surfaces and the metal strip are parallel to
the z-axis, the induced surface charges can be calculated from (13) as

0s = —€d®/n (15)

where 7 denotes the unit direction normal to the surface. Equation
(15) resembles exactly the static case in which ® takes the place of
a static potential.

Equation (10) can be solved for the composite microstrip line
shown in Fig. 1 using finite difference method. The boundary con-
ditions at the layer-layer interfaces are that ® and eud®/dy are
continuous across the interfaces: y = 0,y = —dy. and y =
—(dy + d). Perfect conductor boundary conditions, d®/dn = 0,
are assumed at the shielded metal surfaces: * = —a, = a, y = b,
and y = —(d1 + d + ds). Here 7 denotes the unit direction nermal
to the shielded surfaces. Propagation constant k, which is a complex
number in general, can be determined by imposing the zero-charge
condition in which the total charges induce over all of the metal

surfaces are zero
/ n-vVi®=0

where > denotes all of the metal surfaces. The effective dielectric
constant for the composite structure of the microstrip line, €., can be
calculated from the propagation constant & as

er = wleopo)? /Re (k).

(16)

(17)

The characteristic impedance of the line, Z,, is derived from ¢, and
¢€ro, Which are the capacitances per unit length of the line, as [8]

- €oflo
— —_—
€r€ro

(18)
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where €., represents the value of the capacitance per unit length when
the layers are replaced by air. For the case of single-layer substrate,
d = 0 and €1 = €4, calculations for €. and Z, using the above gauge-
field method give rise to exactly the same results as the conventional
method for a microstrip line [9].

Let the above microstrip line of length L, which is connected to
two 50 €2 feeder lines. Denote the characteristic impedance and wave
propagation constant of the feeder lines by Z; and %1, respectively.
The reflection coefficient, R. at the input port and transmission
coefficient, 7', at the output port can be calculated to be

R=-Y(E-1/E). (19)

T=Y(X-1/X)exp(jk1 L) 20)
where £, X, and Y are defined as

E =exp(—jkoL),
X = (Zo - Zl)/(Zo + Z1)~

Y +[EX - (EX)"17.
Scattering parameters, S11 and So1, are therefore
511 = 2010g10|RI,

and So; = 201log,,|T. 1)

III. RESULTS

The transmission characteristics of the above line of length L have
been calculated assuming 50 §2 air feeder lines. Fig. 2 shows the
transmission curves as a function of frequency for various external
biasing field strength, H,. In Fig. 2 we have used the following
parameters:

e=35
di = 0.05 mm
do = 0.5 mm
d =10 pm
w = 0.885 mm
L =0.5 mm
47 M, = 10 kG (permalloy)
AH = 50 Oe (at 30 GHz)

p = 1.68 u2 cm (permalloy).

It is seen in Fig. 2 that the transmission occurs at FMAR frequency
with a bandwidth roughly equal to the FMAR linewidth. The trans-
mission frequency is tuned from 30 to 70 GHz with insertion loss less
than 0.2 dB, isolation larger than 10 dB, and frequency bandwidth
less than 2 GHz. In order to enhance isolation larger L and smaller
dy values may be used.
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Fig. 2. Transmission characteristics of the filter biased at various magnetic
fields.

120

IV. CONCLUSION

The insertion loss for a resonant-type filter is inevitably high, since
at FMR energy dissipates as heat when the precessing motion of
spins is damped by magnetic relaxation. Furthermore, the frequency
tuning range of the filter is limited by the excitation of higher-order
magnetostatic modes appearing as spurious transmission. Instead
of utilizing ferromagnetic resonance phenomenon associated with a
ferrite insulator we have considered in this paper the fabrication of
nonresonant frequency-tunable band-pass filters using ferromagnetic
metals which are biased at ferromagnetic anti-resonance (FMAR).
Since the devices are biased off-resonance, the filters exhibit low
insertion loss which can be applied under relatively higher power
conditions. However, the calculated isolation exhibit lower values
than that obtained from a resonant-type YIG filer [2]. In order to
increase the frequency tuning range of the filter metal films other than
permalloy with lower magnetization saturation values are preferred
to be used. For example, cobalt alloyed magnetic thin films can
have very small 47}, values. Of particular interest we propose the
use of Co74GesB15Sis thin films, since they possess nearly zero
magnetostriction coefficients and exhibit very small magnetization
saturation values [10]. Our tunable filter design provides great ad-
vantage over the traditional YIG filters in terms of tuning frequency
range, response time, and compatibility with other planar microwave
circuits. Frequency tunable filters are desirable for radar transmitter-
receiver module applications in order to eliminate receiver images as
well as to increase amplifier efficiency.

REFERENCES

[1] J. Uber and W. J. R. Hoefer, “Tunable microwave and millimeter-wave
band-pass filters,” IEEE Trans. Microwave Theory Tech., vol. 39, p. 643,
1991.

[2] R. Roeschmann. “YIG filters,” Phillips Tech. Res., vol. 32, p. 322, 1971.

[3]1 M. Kagonov, Fiz. Met. Metalloved, vol. 7, p. 287, 1959.

[4] B. Hewnrich and Machcheryakov, JETP Lett., vol. 9, p. 378, 1969.

[5]1 J. M. Rudd, J. F. Cochran, K. B. Urquhart, K. Mytle, and Heinrich,
“Ferromagnetic antiresonance transmission through pure iron at 73
GHz,” J. Appl. Phys., vol. 63, p. 3811, 1988.

[6] P. Lubitz and C. Vittoria, “Remarks on antiresonance in ferromagnetic
metals,” in AIP Conf. Proc., vol. 24, 1975, p. 507.

[71 1. E. Cochran, B. Heinrich, and G. Dewar, “Ferromagnetic antiresonance
transition through supermalloy at 24 GHz,” Can. J. Phys., vol. 55, p.
787, 1977.



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO 7, JULY 1995

[8] T. C. Edwards, Foundations for Microstrip Circuit Design. New York:

Wiley, 1987.

{91 H. How and C. Vittoria, “Design of drop-in microstrip circulator,” IEEE
Trans. Microwave Theory Tech., submitted, 1993,

[10] V. G. Harris, S. A. Oliver, W. B. Nowak, and C. Vittoria, “Magnetic
and microwave resonance properties of ion beam sputtered amorphous
FexCogo—xB15Siis films,” J. Appl. Phys., vol. 67, p. 5571, 1990.

Quick Computation of [C],[L], [G], and [R] Matrices of
Multiconductor and Multilayered Transmission Systems

Gonzalo Plaza, Francisco Mesa, and Manuel Horno

Abstract—This paper presents a general scheme to compute the four
characteristic matrices, [C].[G],[L] and [R], of a multilayered and
multiconductor transmission line with arbitrary cress section conductors
under quasi-TEM approach and strong skin effect regime. The conductors
are modeled as a set of infinitesimally thin strips following the M-
strip model. An spectral domain approach (SDA) has been employed,
paying special attention te the efficient computation of the spectral tails.
Conductor losses are considered via the incremental inductance rule
extended to the multiconductor case.

I. INTRODUCTION

The computation of the TEM (or quasi-TEM) parameters of
multiconductor transmission lines having arbitrary cross section con-
ductors embedded in a layered medium is basic for the design
and analysis of a variety of technological problems ranging from
microwave integrated/printed circuits to high speed interconnects.
Several methods have been gradually reported in the literature to
compute these parameters, although general treatments have been
only provided recently. Some of these general methods, following
different techniques, have been reported in [1]-[3] and [4]. In [5]
and [6] the authors proposed and developed the M -strips model
to analyze arbitrary cross section perfect conductors in a multilay-
ered medium without restriction on those dielectric and magnetic
properties compatible with the quasi-TEM approach.

In the present work, we present a new mixed spectral/spatial
domain approach to compute the characteristic matrices of transmis-
sion lines with arbitrarily cross section conductors (in laterally open
environment) using the M -strips model. We have attained a good
numerical efficiency by combining the complex images technique [7]
with a nontrivial extension of the guide lines suggested in [8] to
evaluate the required inner products and convolutions and the use of
recurrence relationships [6]. We have also incorporated the study of
conductor losses under strong skin effect regime by computing the
resistance matrix via an extension of the incremental inductance rule
of Wheeler to a multiconductor line [9].

II. ANALYSIS

Following the M -strip model [5], each original conductor with
arbitrary cross section is modeled as a set of infinitesimally thin
strips at the same potential and circumscribed to the contour of the
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original conductor. The corresponding spectral integral equation is
solved via the Galerkin’s method (using as spatial basis function the
Chebyshev’s polynomials weighed by the Maxwell’s distribution).
The spectral integrals appearing in the Galerkin’s matrix show the
following form

+oo
e =/ h(“’gk”)c;u(kx)(im (“’qu’”)eJ’“ws dky

—oo

6]

where the subscripts p and ¢ are used to number the strips in the
model, wy(yy is the width of each strip; s = ¢ — ¢, with ¢p(4) being
the abscisa of their centers; .J,, is the Bessel function of order n and
G.;(k:) is the spectral Green’s function for a source line at the jth
metallizated level (where gth strip is placed) and field points at the
tth level (where pth strip is placed).

Since the numerical efficiency of the SDA is strongly determined
by the fast and accurate computation of the spectral integrals, we
have paid an especial attention to accelerate its computation because
we face to a very slow convergence caused by extremely close strips.
We have used the asymptotic integration scheme shown in [6], where

the asymptotic behavior of the spectral Green’s function, G}, is now
expressed following the complex images technique [7]
N
gy o exp(Q7 k)
G (k) = nz_:l A= @)

Expansion (2) provides a very good fitting of the spectral Green’s
function and thus the integrals involving G — G*° converge quickly.
In consequence, the efficiency of the proposed integration technique
lies basically in the computation of the integral tails. The generic
form, except for constants, of these integral tails is

(=B+1Dks

> 3
T dk (3)

m= / T (aks) Ton (b
where u is a suvitable value to start using the asymptotic behavior;
a and b are the semiwidths of the strips; / = —Re(f2) and
d = s +Im()) (Q stands for any of the complex exponents in (2)).
The new distance, d, can be seen as a modified distance between the
centers of the strips in the integrals tails.

The integral tails (3) are computed by reversing them to the
spatial domain via Parseval’s theorem. The use of Parseval’s theorem
requires a previous extension of the tails from —oo to +oc. This
extension is readily made by multiplying the integrand in (3) by
the step function H(k, — u) and so, the following spatial domain
integral is obtained

PO ) Ly L X0
7 T2 _1 /1 _ 72
Y T(a)
. [ i \/i——_——(;QzEl(UC) da:l dn @

where { = 7+ j(ay — ba — d). o and ~ appear after changing the
integration variable (both in the convolution integral in o~ and the
inner product integral in ~-) into the interval (—1.1) and F1{u()
stands for the exponential integral function, which can be expanded
as shown in [10]. The convolution product in expression (4) might
be regarded as a complex potential originated by a strip of width 2b
(source-strip) over a second strip of width 2a (observer-strip) placed
at a height 3 above the first one, and with its center laterally separated
a distance d. We will express ourselves in these terms to simplify the
descriptions in the below analysis.
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